December 4, 2014

Rstanでワイブル分布のパラメータ推定(打切りのあるデータで)

weibull.stan

data {

  int<lower=1> J; // number of data

  int status[J];

  real<lower=0> tt[J];

}

parameters {

  real<lower=1> m; 

  real<lower=1> eta;

}

model {

  for(j in 1:J){

    if(status[j] == 1){

      increment_log_prob(weibull_log(tt[j], m, eta));

    }

    if(status[j] == 0){

      increment_log_prob(weibull_ccdf_log(tt[j], m, eta));

    }

  }

}

weibull.R

サンプルデータの生成

> set.seed(0)

> data.df <- data.frame(tt = rweibull(1000, shape = 2, scale = 100),

+                       status = rep(1,1000))

> data.df[data.df$tt > 30,]$status <- 0

> data.df[data.df$tt > 30,]$tt <- 30

> 1-sum(data.df$status)/nrow(data.df) # 打切り率

[1] 0.904

Rstan用データと推定

data.stan <- list(J = nrow(data.df),

                  tt = data.df$tt,

                  status = data.df$status)



fit <- stan(file = 'weibull.stan', data = data.stan, 

            iter = 1000, chains = 4)

推定結果

> fit

Inference for Stan model: weibull.

4 chains, each with iter=1000; warmup=500; thin=1; 

post-warmup draws per chain=500, total post-warmup draws=2000.



        mean se_mean    sd    2.5%     25%     50%     75%   97.5% n_eff Rhat

m       1.96    0.01  0.19    1.61    1.82    1.94    2.09    2.37   349 1.01

eta    99.49    0.70 13.03   77.71   89.63   98.45  108.25  128.27   351 1.01

lp__ -622.54    0.04  0.96 -625.07 -622.94 -622.28 -621.84 -621.53   566 1.00



Samples were drawn using NUTS(diag_e) at Thu Dec 04 03:30:48 2014.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at 

convergence, Rhat=1).

© gepuro 2013

Slideshare Icon from here , Home Icon from icons8